Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
A Taylor series expansion shows that the ... (code- mcs033) John C. Butcher: "B-Series : ... Tracker Component Library Implementation in Matlab — Implements 32 ...
This class includes Hermite–Obreschkoff methods and Fehlberg methods, as well as methods like the Parker–Sochacki method [17] or Bychkov–Scherbakov method, which compute the coefficients of the Taylor series of the solution y recursively. methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ...
The map exp, defined by its standard Taylor series, is a bijection between the set of elements of S with constant term 0 and the set of elements of S with constant term 1; the inverse of exp is log r = exp ( s ) {\displaystyle r=\exp(s)} is grouplike (this means Δ ( r ) = r ⊗ r {\displaystyle \Delta (r)=r\otimes r} ) if and only if s is ...
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}
The constant term in the Taylor series of the scaled bifurcation equation is called the algebraic bifurcation equation, and the implicit function theorem applied the bifurcation equations states that for each isolated solution of the algebraic bifurcation equation there is a branch of solutions of the original problem which passes through the ...