Search results
Results from the WOW.Com Content Network
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
The block-stacking problem: blocks aligned according to the harmonic series can overhang the edge of a table by the harmonic numbers In the block-stacking problem , one must place a pile of n {\displaystyle n} identical rectangular blocks, one per layer, so that they hang as far as possible over the edge of a table without falling.
The harmonic numbers are a fundamental sequence in number theory and analysis, known for their logarithmic growth. This result leverages the fact that the sum of the inverses of integers (i.e., harmonic numbers) can be closely approximated by the natural logarithm function, plus a constant, especially when extended over large intervals.
Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}
2.1 Harmonic numbers. 2.2 Representation of Riemann's zeta function. 2.3 Reciprocal of Riemann zeta function. 3 See also. 4 References. Toggle the table of contents.
It was fun to try to peck out words. 53045 looked like “shoes.” 5508 resembled “boss.” 37818 was “Bible” and 7734 was “hell.” This eventually led to the forbidden number 5318008.
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially ...
A weakly harmonic function coincides almost everywhere with a strongly harmonic function, and is in particular smooth. A weakly harmonic distribution is precisely the distribution associated to a strongly harmonic function, and so also is smooth. This is Weyl's lemma. There are other weak formulations of Laplace's equation that are often useful.