Search results
Results from the WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event be 'I have a new phone'; event be 'I have a new watch'; and event be 'I am happy'; and suppose that having either a new phone or a new watch increases the probability of my being happy.
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [13] by Abraham Wald in the context of sequential tests of statistical hypotheses. [14]
The dependent variable is the event expected to change when the independent variable is manipulated. [ 11 ] In data mining tools (for multivariate statistics and machine learning ), the dependent variable is assigned a role as target variable (or in some tools as label attribute ), while an independent variable may be assigned a role as regular ...
In probability theory, a tree diagram may be used to represent a probability space. A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [ 1 ]
[3] [4] No blocking (left) vs blocking (right) experimental design. When studying probability theory the blocks method consists of splitting a sample into blocks (groups) separated by smaller subblocks so that the blocks can be considered almost independent. [5] The blocks method helps proving limit theorems in the case of dependent random ...
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...