Search results
Results from the WOW.Com Content Network
Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown. Repeat steps 1 and 2 until the system is reduced to a single linear equation. Solve this equation, and then back-substitute until the entire solution is found. For example, consider the following system:
Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number 2 through n of the original system are satisfied; it only remains to satisfy equation number 1.
Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.
Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
The scheme is always numerically stable and convergent but usually more numerically intensive than the explicit method as it requires solving a system of numerical equations on each time step. The errors are linear over the time step and quadratic over the space step: Δ u = O ( k ) + O ( h 2 ) . {\displaystyle \Delta u=O(k)+O(h^{2}).}