Search results
Results from the WOW.Com Content Network
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
In chemistry, a nucleophilic substitution (S N) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate.
When the solvent is also a nucleophile such as dioxane two successive S N 2 reactions take place and the stereochemistry is again retention. With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3]
In reactions where the leaving group is also a good nucleophile (bromide for instance) the leaving group can perform an S N 2 reaction on a substrate molecule. If the substrate is chiral, this inverts the configuration of the substrate before solvolysis, leading to a racemized product–the product that would be expected from an S N 1 mechanism.
In such reactions, the nucleophile is usually electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R−Br, under basic conditions, where the attacking nucleophile is the base OH − and the leaving group is Br −:
A chemical reaction is a process that leads to the chemical transformation of one set of chemical ... This is followed by a rapid reaction with the nucleophile.
In many nucleophilic reactions, addition to the carbonyl group is very important. In some cases, the C=O double bond is reduced to a C-O single bond when the nucleophile bonds with carbon. For example, in the cyanohydrin reaction a cyanide ion forms a C-C bond by breaking the carbonyl's double bond to form a cyanohydrin.
the simple first-order rate law described in introductory textbooks. Under these conditions, the concentration of the nucleophile does not affect the rate of the reaction, and changing the nucleophile (e.g. from H 2 O to MeOH) does not affect the reaction rate, though the product is, of course, different. In this regime, the first step ...