enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleophile - Wikipedia

    en.wikipedia.org/wiki/Nucleophile

    A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...

  3. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    In chemistry, a nucleophilic substitution (S N) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate.

  4. Alpha effect - Wikipedia

    en.wikipedia.org/wiki/Alpha_effect

    In 1962, Edwards and Pearson (the latter of HSAB theory) introduced the phrase alpha effect for this anomaly. He offered the suggestion that the effect was caused by a transition state (TS) stabilization effect: on entering the TS the free electron pair on the nucleophile moves away from the nucleus, causing a partial positive charge which can be stabilized by an adjacent lone pair as for ...

  5. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    In the S N 1 reaction the nucleophile attacks after the rate-limiting step is over, whereas in S N 2 the nucleophile forces off the leaving group in the limiting step. In other words, the rate of S N 1 reactions depend only on the concentration of the substrate while the S N 2 reaction rate depends on the concentration of both the substrate and ...

  6. Nucleophilic addition - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_addition

    In many nucleophilic reactions, addition to the carbonyl group is very important. In some cases, the C=O double bond is reduced to a C-O single bond when the nucleophile bonds with carbon. For example, in the cyanohydrin reaction a cyanide ion forms a C-C bond by breaking the carbonyl's double bond to form a cyanohydrin.

  7. SNi - Wikipedia

    en.wikipedia.org/wiki/SNi

    When the solvent is also a nucleophile such as dioxane two successive S N 2 reactions take place and the stereochemistry is again retention. With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3]

  8. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    This reaction differs from a common S N 2 reaction, because it happens at a trigonal carbon atom (sp 2 hybridization). The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the ...

  9. Walden inversion - Wikipedia

    en.wikipedia.org/wiki/Walden_inversion

    Montage, using ball-and-stick models, of the three steps in an S N 2 reaction.The nucleophile is green, the leaving group is red and the three substituents are orange. The S N 2 reaction causes inversion of stereochemical configuration, known as Walden inversion.