Search results
Results from the WOW.Com Content Network
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
In chemistry, a nucleophilic substitution (S N) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate.
In 1962, Edwards and Pearson (the latter of HSAB theory) introduced the phrase alpha effect for this anomaly. He offered the suggestion that the effect was caused by a transition state (TS) stabilization effect: on entering the TS the free electron pair on the nucleophile moves away from the nucleus, causing a partial positive charge which can be stabilized by an adjacent lone pair as for ...
In the S N 1 reaction the nucleophile attacks after the rate-limiting step is over, whereas in S N 2 the nucleophile forces off the leaving group in the limiting step. In other words, the rate of S N 1 reactions depend only on the concentration of the substrate while the S N 2 reaction rate depends on the concentration of both the substrate and ...
In many nucleophilic reactions, addition to the carbonyl group is very important. In some cases, the C=O double bond is reduced to a C-O single bond when the nucleophile bonds with carbon. For example, in the cyanohydrin reaction a cyanide ion forms a C-C bond by breaking the carbonyl's double bond to form a cyanohydrin.
When the solvent is also a nucleophile such as dioxane two successive S N 2 reactions take place and the stereochemistry is again retention. With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3]
This reaction differs from a common S N 2 reaction, because it happens at a trigonal carbon atom (sp 2 hybridization). The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the ...
Montage, using ball-and-stick models, of the three steps in an S N 2 reaction.The nucleophile is green, the leaving group is red and the three substituents are orange. The S N 2 reaction causes inversion of stereochemical configuration, known as Walden inversion.