Search results
Results from the WOW.Com Content Network
The production of heptose is conserved across gram-negative bacteria. In the form of L-glycero-D-mannose-heptose, heptose is a key component in the secondary membrane of gram-negative bacteria. Gram-negative bacteria, in addition to having a cell wall, are also encapsulated by a membrane composed of lipopolysaccharides. [5]
It is a monosaccharide that is very rare in nature, but has been found in archaea, bacteria and eukaryotes. [3] It also exists as a syrup with a sweet taste. It is soluble in water and slightly soluble in methanol. Neither the d - nor l-forms are fermentable by yeast. D-Gulose is a C-3 epimer of D-galactose and a C-5 epimer of L-mannose. [4]
Carbohydrates are generally divided into monosaccharides, oligosaccharides, and polysaccharides depending on the number of sugar subunits. Maltose, with two sugar units, is a disaccharide, which falls under oligosaccharides. Glucose is a hexose: a monosaccharide containing six carbon atoms.
For many monosaccharides (including glucose), the cyclic forms predominate, in the solid state and in solutions, and therefore the same name commonly is used for the open- and closed-chain isomers. Thus, for example, the term "glucose" may signify glucofuranose, glucopyranose, the open-chain form, or a mixture of the three.
Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose. The glucose molecule can exist in an open-chain (acyclic) as well as ring (cyclic) form. Glucose is naturally occurring and is found in its free state in fruits and other parts of plants.
Galactose is a monosaccharide. When combined with glucose (another monosaccharide) through a condensation reaction, the result is a disaccharide called lactose. The hydrolysis of lactose to glucose and galactose is catalyzed by the enzymes lactase and β-galactosidase.
There are two functionally different classes of disaccharides: Reducing disaccharides, in which one monosaccharide, the reducing sugar of the pair, still has a free hemiacetal unit that can perform as a reducing aldehyde group; lactose, maltose and cellobiose are examples of reducing disaccharides, each with one hemiacetal unit, the other occupied by the glycosidic bond, which prevents it from ...
It is found in nature as a disaccharide and also as a monomer in some polymers. [7] Two other stereoisomers exist: α,β-trehalose, also called neotrehalose, and β,β-trehalose, also called isotrehalose. Neither of these alternate isomers has been isolated from living organisms, but isotrehalose has been was found in starch hydroisolates. [7]