enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    For example, if x represents a sequence of coin flips, then the associated Bernoulli sequence is the list of natural numbers or time-points for which the coin toss outcome is heads. So defined, a Bernoulli sequence Z x {\displaystyle \mathbb {Z} ^{x}} is also a random subset of the index set, the natural numbers N {\displaystyle \mathbb {N} } .

  3. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  4. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    Next, let r be the actual probability of obtaining heads in a single toss of the coin. This is the property of the coin which is being investigated. Using Bayes' theorem, the posterior probability density of r conditional on h and t is expressed as follows:

  5. Good–Turing frequency estimation - Wikipedia

    en.wikipedia.org/wiki/Good–Turing_frequency...

    The method even gained some literary fame due to the Robert Harris novel Enigma. In the 1990s, Geoffrey Sampson worked with William A. Gale of AT&T to create and implement a simplified and easier-to-use variant of the Good–Turing method [ 3 ] [ 4 ] described below.

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Consider a simple statistical model of a coin flip: a single parameter that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two ...

  7. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  8. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  9. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.