Search results
Results from the WOW.Com Content Network
In linear algebra, an invertible matrix is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...
A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.
[1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)). The Sherman–Morrison formula is a special case of the Woodbury formula .
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
If D is invertible, then the Schur complement of the block D of the matrix M is the p × p matrix defined by /:=. If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by M / A := D − C A − 1 B . {\displaystyle M/A:=D-CA^{-1}B.}
The inverse matrix of e X is given by e −X. This is analogous to the fact that the exponential of a complex number is always nonzero. The matrix exponential then gives us a map : (,) from the space of all n × n matrices to the general linear group of degree n, i.e. the group of all n × n invertible
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
The determinant of square matrices over a commutative ring R can still be defined using the Leibniz formula; such a matrix is invertible if and only if its determinant is invertible in R, generalizing the situation over a field F, where every nonzero element is invertible. [59] Matrices over superrings are called supermatrices. [60]