enow.com Web Search

  1. Ad

    related to: point geometry real life example of additive inverse matrix equations

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [9] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [10]

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    Any matrix can be decomposed as = for some isometries , and diagonal nonnegative real matrix . The pseudoinverse can then be written as A + = V D + U ∗ {\displaystyle A^{+}=VD^{+}U^{*}} , where D + {\displaystyle D^{+}} is the pseudoinverse of D {\displaystyle D} and can be obtained by transposing the matrix and replacing the nonzero values ...

  4. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...

  5. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =

  7. Real point - Wikipedia

    en.wikipedia.org/wiki/Real_point

    A point of the original geometric space is defined by an equivalence class of homogeneous vectors of the form λu, where λ is an nonzero complex value and u is a real vector. A point of this form (and hence belongs to the original real space) is called a real point, whereas a point that has been added through the complexification and thus does ...

  8. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix. This ...

  1. Ad

    related to: point geometry real life example of additive inverse matrix equations