enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%.

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    1 ⁠ cal / °C⋅g ⁠ = 1 ⁠ Cal / °Ckg ⁠ = 1 ⁠ kcal / °Ckg ⁠ = 4184 ⁠ J / kgK ⁠ [20] = 4.184 ⁠ kJ / kgK ⁠. Note that while cal is 1 ⁄ 1000 of a Cal or kcal, it is also per gram instead of kilo gram : ergo, in either unit, the specific heat capacity of water is approximately 1.

  4. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...

  5. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Energy density is thus commonly expressed in metric units of cal/g, kcal/g, J/g, kJ/g, MJ/kg, cal/mL, kcal/mL, J/mL, or kJ/mL. Energy density measures the energy released when the food is metabolized by a healthy organism when it ingests the food (see food energy for calculation).

  6. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000

  7. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  8. Template:Convert/list of units/energy - Wikipedia

    en.wikipedia.org/wiki/Template:Convert/list_of...

    Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)

  9. Heat capacities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heat_capacities_of_the...

    All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.