Search results
Results from the WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
Stress has dimension of force per area, with SI units of newtons per square meter (N/m 2) or pascal (Pa). [1] Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the relative deformation of the material. [3]
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
Torsional stresses: = where is the torsional shear stress, is the applied torque, is the distance from the central axis, and is the polar second moment of area. Note: In a circular shaft, the shear stress is maximal at the surface of the shaft.
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
The maximum compressive stress is found at the uppermost edge of the beam while the maximum tensile stress is located at the lower edge of the beam. Since the stresses between these two opposing maxima vary linearly , there therefore exists a point on the linear path between them where there is no bending stress.
The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]