Search results
Results from the WOW.Com Content Network
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It's a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.
The second time around the circle, the new 2nd person dies, then the new 4th person, etc.; it is as though there were no first time around the circle. If the initial number of people were even, then the person in position x during the second time around the circle was originally in position 2 x − 1 {\displaystyle 2x-1} (for every choice of x ).
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
A slerp path is, in fact, the spherical geometry equivalent of a path along a line segment in the plane; a great circle is a spherical geodesic. Oblique vector rectifies to slerp factor. More familiar than the general slerp formula is the case when the end vectors are perpendicular, in which case the formula is p 0 cos θ + p 1 sin θ.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, ... the input ellipse changes into a circle. A circle corresponds ...
The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere. The counterparts of a circle in other dimensions can never be packed with complete efficiency in dimensions larger than one (in a one-dimensional universe, the circle analogue is just two points). That is ...