enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.

  4. Minimum redundancy feature selection - Wikipedia

    en.wikipedia.org/wiki/Minimum_redundancy_feature...

    Features can be selected in many different ways. One scheme is to select features that correlate strongest to the classification variable. This has been called maximum-relevance selection. Many heuristic algorithms can be used, such as the sequential forward, backward, or floating selections.

  5. Forward–backward algorithm - Wikipedia

    en.wikipedia.org/wiki/Forwardbackward_algorithm

    The first pass goes forward in time while the second goes backward in time; hence the name forwardbackward algorithm. The term forwardbackward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forwardbackward manner. In this sense, the descriptions in the ...

  6. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    The Baum–Welch algorithm uses the well known EM algorithm to find the maximum likelihood estimate of the parameters of a hidden Markov model given a set of observed feature vectors. Let X t {\displaystyle X_{t}} be a discrete hidden random variable with N {\displaystyle N} possible values (i.e.

  7. Look-ahead (backtracking) - Wikipedia

    en.wikipedia.org/wiki/Look-ahead_(backtracking)

    Forward checking only checks whether each of the unassigned variables x 3 and x 4 is consistent with the partial assignment, removing the value 2 from their domains. The simpler technique for evaluating the effect of a specific assignment to a variable is called forward checking . [ 1 ]

  8. Proximal gradient methods for learning - Wikipedia

    en.wikipedia.org/wiki/Proximal_gradient_methods...

    Proximal gradient (forward backward splitting) methods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable.

  9. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.