Search results
Results from the WOW.Com Content Network
The unit circle is closed and bounded, but it has a hole (and so it is not convex) . The function f does have a fixed point for the unit disc, since it takes the origin to itself. A formal generalization of Brouwer's fixed-point theorem for "hole-free" domains can be derived from the Lefschetz fixed-point theorem. [11]
A function is continuous on a semi-open or a closed interval; if the interval is contained in the domain of the function, the function is continuous at every interior point of the interval, and the value of the function at each endpoint that belongs to the interval is the limit of the values of the function when the variable tends to the ...
In 1954, Eldon Dyer asked whether if and are two continuous functions that map a closed interval on the real line into itself and commute, they must have a common fixed point. The same question was raised independently by Allen Shields in 1955 and again by Lester Dubins in 1956. [ 4 ]
The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.
This is only a special case of L'Hôpital's rule, because it only applies to functions satisfying stronger conditions than required by the general rule. However, many common functions have continuous derivatives (e.g. polynomials, sine and cosine, exponential functions), so this special case covers most applications.
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain , one says that it has a discontinuity there.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.