enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The version of the Rydberg formula that generated the Lyman series was: [2] = (= +) where n is a natural number greater than or equal to 2 (i.e., n = 2, 3, 4, .... Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left.

  3. Lyman continuum photons - Wikipedia

    en.wikipedia.org/wiki/Lyman_continuum_photons

    The Lyman Series. The Lyman limit is at the wavelength of 91.2 nm (912 Å), corresponding to a frequency of 3.29 million GHz and a photon energy of 13.6 eV. [3] LyC energies are mostly in the ultraviolet C portion of the electromagnetic spectrum (see Lyman series).

  4. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .

  5. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).

  6. Lyman limit - Wikipedia

    en.wikipedia.org/wiki/Lyman_limit

    In physics and chemistry, the Lyman limit is the short-wavelength end of the Lyman series of hydrogen emission lines at 91.13 nm (911.3 Å). The associated photon energy, 13.6 eV, corresponds to the energy required for an electron in the hydrogen ground state to escape from the electric potential barrier that originally confined it, thus creating a hydrogen ion. [1]

  7. Rydberg–Ritz combination principle - Wikipedia

    en.wikipedia.org/wiki/Rydberg–Ritz_combination...

    The combination principle is explained using quantum theory. Light consists of photons whose energy E is proportional to the frequency ν and wavenumber of the light: E = hν = hc/λ (where h is the Planck constant, c is the speed of light, and λ is the wavelength). A combination of frequencies or wavenumbers is then equivalent to a ...

  8. Rydberg constant - Wikipedia

    en.wikipedia.org/wiki/Rydberg_constant

    The last expression in the first equation shows that the wavelength of light needed to ionize a hydrogen atom is 4π/α times the Bohr radius of the atom. The second equation is relevant because its value is the coefficient for the energy of the atomic orbitals of a hydrogen atom: E n = − h c R ∞ / n 2 {\displaystyle E_{n}=-hcR_{\infty }/n ...

  9. Lyman-break galaxy - Wikipedia

    en.wikipedia.org/wiki/Lyman-break_galaxy

    This is known as a "dropout", or "break", and can be used to find the position of the Lyman limit. Light with a wavelength shorter than 912 Å is in the far-ultraviolet range, and is blocked by Earth's atmosphere, but for very distant galaxies, the wavelengths of light are stretched considerably because of the expansion of the universe.