Search results
Results from the WOW.Com Content Network
A flagellum (/ f l ə ˈ dʒ ɛ l əm /; pl.: flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores , and from a wide range of microorganisms to provide motility.
English: A Gram-negative bacterial flagellum. A flagellum (plural: flagella) is a long, slender projection from the cell body, whose function is to propel a unicellular or small multicellular organism. The depicted type of flagellum is found in bacteria such as E. coli and Salmonella, and rotates like a propeller when the bacterium swims.
Choanocytes (also known as "collar cells") are cells that line the interior of asconoid, syconoid and leuconoid body types of sponges that contain a central flagellum, or cilium, surrounded by a collar of microvilli which are connected by a thin membrane. They make up the choanoderm, a type of cell layer found in sponges.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body. Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum.
Flagella are whip-like structures protruding from the bacterial cell wall and are responsible for bacterial motility (movement). The arrangement of flagella about the bacterial cell is unique to the species observed. Common forms include: Monotrichous – Single flagellum; Lophotrichous – A tuft of flagella found at one of the cell poles
Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).
Movement of the flagellum draws water through the collar, and bacteria and detritus are captured by the microvilli and ingested. [13] Water currents generated by the flagellum also push free-swimming cells along, as in animal sperm. In contrast, most other flagellates are pulled by their flagella. [citation needed]