Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure, V is volume, n is the polytropic index, and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
Polytropic; Free expansion; ... Defining equation SI unit Dimension General heat/thermal capacity C = ... ML 2 T −2 Θ −1: Specific heat capacity (isobaric) ...
Since the process is isochoric, dV = 0, the previous equation now gives = Using the definition of specific heat capacity at constant volume, c v = ( dQ / dT )/ m , where m is the mass of the gas, we get d Q = m c v d T {\displaystyle dQ=mc_{\mathrm {v} }\,dT}
The heat capacity depends on how the external variables of the system are changed when the heat is supplied. If the only external variable of the system is the volume, then we can write: d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V {\displaystyle dS=\left({\frac {\partial S}{\partial T}}\right)_{V}dT+\left({\frac {\partial S}{\partial V ...
This extra heat amounts to about 40% more than the previous amount added. In this example, the amount of heat added with a locked piston is proportional to C V, whereas the total amount of heat added is proportional to C P. Therefore, the heat capacity ratio in this example is 1.4.
Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The normalized density as a function of scale length for a wide range of polytropic indices. In astrophysics, a polytrope refers to a solution of the Lane–Emden equation in which the pressure depends upon the density in the form = (+) / = + /, where P is pressure, ρ is density and K is a constant of proportionality. [1]