Search results
Results from the WOW.Com Content Network
A typical reaction with silver nitrate is to suspend a rod of copper in a solution of silver nitrate and leave it for a few hours. The silver nitrate reacts with copper to form hairlike crystals of silver metal and a blue solution of copper nitrate: 2 AgNO 3 + Cu → Cu(NO 3) 2 + 2 Ag. Silver nitrate decomposes when heated:
Experiments with the Tree of Diana have inspired modern chemists to replicate its creation, using the process to analyze reactions between metals and other substances. A 1967 experiment at the University of Seattle studied the reaction between solid copper and aqueous silver nitrate. In it, silver ions reacted with the copper metal to form a ...
In analytical chemistry, argentometry is a type of titration involving the silver(I) ion. Typically, it is used to determine the amount of chloride present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration. Chloride ions react with silver(I) ions to give the insoluble silver chloride:
When a copper wire is dipped in a silver nitrate solution, copper displaces silver, turning the solution blue and solid silver precipitates out ("silver tree"): Cu + AgNO₃ → Cu(NO₃)₂ + Ag↓ NCSSM video on single displacement reaction Formation of tin crystals as zinc displaces tin, seen under microscope.
The flame test carried out on a copper halide. The characteristic bluish-green color of the flame is due to the copper. A flame test is relatively quick test for the presence of some elements in a sample. The technique is archaic and of questionable reliability, but once was a component of qualitative inorganic analysis.
Copper from a wire is displaced by silver from a silver nitrate solution it is dipped into, and metallic silver crystals precipitate onto the copper wire. The Walden reductor is an illustration of a reduction reaction directly accompanied by the precipitation of a less soluble compound because of its lower chemical valence:
Some silver oxide powder.. Silver is a relatively unreactive metal, although it can form several compounds. The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO 3); +2 (highly oxidising; for example, silver(II) fluoride, AgF 2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III ...
The halogens can all react with metals to form metal halides according to the following equation: 2M + nX 2 → 2MX n. where M is the metal, X is the halogen, and MX n is the metal halide. Sample of silver chloride. In practice, this type of reaction may be very exothermic, hence impractical as a preparative technique.