enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    If this procedure is performed many times, resulting in a collection of observed averages, the central limit theorem says that if the sample size is large enough, the probability distribution of these averages will closely approximate a normal distribution. The central limit theorem has several variants.

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  4. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes.

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Usually the sample drawn has the same sample size as the original data. Then the estimate of original function F can be written as F ^ = F θ ^ {\displaystyle {\hat {F}}=F_{\hat {\theta }}} . This sampling process is repeated many times as for other bootstrap methods.

  6. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    By the central limit theorem, sample means of moderately large samples are often well-approximated by a normal distribution even if the data are not normally distributed. However, the sample size required for the sample means to converge to normality depends on the skewness of the distribution of the original data.

  7. Berry–Esseen theorem - Wikipedia

    en.wikipedia.org/wiki/Berry–Esseen_theorem

    As with the multidimensional central limit theorem, there is a multidimensional version of the Berry–Esseen theorem. [4] [5]Let , …, be independent -valued random vectors each having mean zero.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Galton board - Wikipedia

    en.wikipedia.org/wiki/Galton_board

    Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.