enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during

  5. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    The applied change in velocity of each maneuver is referred to as delta-v (). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers.

  6. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    The delta-v required is the vector change in velocity between the two planes at that point. However, maximum efficiency of inclination changes are achieved at apoapsis , (or apogee ), where orbital velocity v {\displaystyle v} is the lowest.

  7. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    This equation indicates that a Δv of times the exhaust velocity requires a mass ratio of . For instance, for a vehicle to achieve a Δ v {\displaystyle \Delta v} of 2.5 times its exhaust velocity would require a mass ratio of e 2.5 {\displaystyle e^{2.5}} (approximately 12.2).

  8. AOL Mail for Verizon Customers - AOL Help

    help.aol.com/products/aol-mail-verizon

    AOL Mail welcomes Verizon customers to our safe and delightful email experience!

  9. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse in turn has deep impacts on the achievable delta-v and associated orbits achievable, and (by the rocket equation) mass fraction required to achieve a given delta-v. Optimizing the tradeoffs between mass fraction and specific impulse is one of the fundamental engineering challenges in rocketry.