Search results
Results from the WOW.Com Content Network
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
Degree: The maximum exponents among the monomials. Factor: An expression being multiplied. Linear factor: A factor of degree one. Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p.
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]
The system is zero-dimensional if, for every variable there is a leading monomial of some element of the Gröbner basis which is a pure power of this variable. For this test, the best monomial order (that is the one which leads generally to the fastest computation) is usually the graded reverse lexicographic one (grevlex).
It follows that this greatest common divisor is a non constant factor of (). Euclidean algorithm for polynomials allows computing this greatest common factor. For example, [ 10 ] if one know or guess that: P ( x ) = x 3 − 5 x 2 − 16 x + 80 {\displaystyle P(x)=x^{3}-5x^{2}-16x+80} has two roots that sum to zero, one may apply Euclidean ...
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
As the greatest common divisor of P and Q is a constant, the resultant D is not zero, and resultant theory implies that I contains all products of D by a monomial in x, y of degree m + n – 1. As D ∉ x , y , {\displaystyle D\not \in \langle x,y\rangle ,} all these monomials belong to the primary component contained in x , y . {\displaystyle ...