enow.com Web Search

  1. Ads

    related to: why imaginary numbers exist in nature worksheet
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

Search results

  1. Results from the WOW.Com Content Network
  2. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. As with polynomials, it is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  4. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit can also be multiplied by any arbitrary real number to form an imaginary number. These numbers can be pictured on a number line, the imaginary axis, which as part of the complex plane is typically drawn with a vertical orientation, perpendicular to the real axis which is drawn horizontally.

  5. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    All rational numbers are real, but the converse is not true. Irrational numbers (): Real numbers that are not rational. Imaginary numbers: Numbers that equal the product of a real number and the imaginary unit , where =. The number 0 is both real and imaginary.

  6. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots; Therefore some of them must be real. This requires some care in the presence of multiple roots; but a complex root and its conjugate do have the same multiplicity (and this lemma is not hard to prove).

  7. Actual infinity - Wikipedia

    en.wikipedia.org/wiki/Actual_infinity

    The question of whether natural or real numbers form definite sets is therefore independent of the question of whether infinite things exist physically in nature. Proponents of intuitionism, from Kronecker onwards, reject the claim that there are actually infinite mathematical objects or sets. Consequently, they reconstruct the foundations of ...

  8. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    In complex analysis, the complex numbers are customarily represented by the symbol z, which can be separated into its real (x) and imaginary (y) parts: z = x + i y {\displaystyle z=x+iy} for example: z = 4 + 5 i , where x and y are real numbers, and i is the imaginary unit .

  9. Mathematical constant - Wikipedia

    en.wikipedia.org/wiki/Mathematical_constant

    The imaginary unit or unit imaginary number, denoted as i, is a mathematical concept which extends the real number system to the complex number system . The imaginary unit's core property is that i 2 = −1. The term "imaginary" was coined because there is no number having a negative square.

  1. Ads

    related to: why imaginary numbers exist in nature worksheet