enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...

  3. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    The New Zealand lottery game Big Wednesday uses a coin toss. If a player matches all 6 of their numbers, the coin toss will decide whether they win a cash jackpot (minimum of NZ$25,000) or a bigger jackpot with luxury prizes (minimum of NZ$2 million cash, plus value of luxury prizes.)

  4. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...

  5. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is ⁠ 1 / 2 ⁠. Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21

  6. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  7. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    The gambler is playing a game of coin flipping. Suppose X n is the gambler's fortune after n tosses of a fair coin, such that the gambler wins $1 if the coin toss outcome is heads and loses $1 if the coin toss outcome is tails. The gambler's conditional expected fortune after the next game, given the history, is equal to his present fortune.

  8. Three prisoners problem - Wikipedia

    en.wikipedia.org/wiki/Three_Prisoners_problem

    As the warden says B will be executed, it is either because C will be pardoned (⁠ 1 / 3 ⁠ chance), or A will be pardoned (⁠ 1 / 3 ⁠ chance) and the coin to decide whether to name B or C the warden flipped came up B (⁠ 1 / 2 ⁠ chance; for an overall ⁠ 1 / 2 ⁠ × ⁠ 1 / 3 ⁠ = ⁠ 1 / 6 ⁠ chance B was named because A will be ...

  9. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the ...