Search results
Results from the WOW.Com Content Network
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1] [2] = where f is the local Fanning friction factor (dimensionless); τ is the local shear stress (units of pascals (Pa) = kg/m 2, or pounds per square foot (psf) = lbm/ft 2);
The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...
The logarithmic law of the wall is a self similar solution for the mean velocity parallel to the wall, and is valid for flows at high Reynolds numbers — in an overlap region with approximately constant shear stress and far enough from the wall for (direct) viscous effects to be negligible: [3]
This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]
In the hydrodynamic entrance region, the wall shear stress, , is highest at the pipe inlet, where the boundary layer thickness is the smallest. Shear stress decreases along the flow direction. [ 6 ] That is why the pressure drop is highest in the entrance region of a pipe, which increases the average friction factor for the whole pipe.
For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s −1, expressed as "reciprocal seconds" or "inverse seconds". [1] However, when modelling fluids in 3D, it is common to consider a scalar value for the shear rate by calculating the second invariant of the strain ...
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel: