Search results
Results from the WOW.Com Content Network
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. [1]
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
The idea of quantum field theory began in the late 1920s with British physicist Paul Dirac, when he attempted to quantize the energy of the electromagnetic field; just as in quantum mechanics the energy of an electron in the hydrogen atom was quantized. Quantization is a procedure for constructing a quantum theory starting from a classical theory.
Quantum mechanics, a major field of physics; Old quantum theory, predating modern quantum mechanics; Quantum field theory, an area of quantum mechanics that includes: Quantum electrodynamics; Quantum chromodynamics; Electroweak interaction; Quantum gravity, a field of theoretical physics; Quantum optics; Quantum chemistry; Quantum information
In quantum chemistry, the quantum theory of atoms in molecules (QTAIM), sometimes referred to as atoms in molecules (AIM), is a model of molecular and condensed matter electronic systems (such as crystals) in which the principal objects of molecular structure - atoms and bonds - are natural expressions of a system's observable electron density distribution function.
Important applications of quantum theory include quantum chemistry, quantum optics, quantum computing, superconducting magnets, light-emitting diodes, the optical amplifier and the laser, the transistor and semiconductors such as the microprocessor, medical and research imaging such as magnetic resonance imaging and electron microscopy. [4]
The word quantum is the neuter singular of the Latin interrogative adjective quantus, meaning "how much"."Quanta", the neuter plural, short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity.
Physicist Leslie E. Ballentine gave the textbook a positive review, declaring it a good introduction to quantum foundations and ongoing research therein. [9] John C. Baez also gave the book a positive assessment, calling it "clear-headed" and finding that it contained "a lot of gems that I hadn't seen", such as the Wigner–Araki–Yanase theorem. [10]