Search results
Results from the WOW.Com Content Network
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 .
In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of . In linear programming problems, an extreme point is also called vertex or corner point of S . {\displaystyle S.} [ 1 ]
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
A vertex cut or separating set of a connected graph G is a set of vertices whose removal renders G disconnected. The vertex connectivity κ(G) (where G is not a complete graph) is the size of a smallest vertex cut. A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater.
Complete bipartite graph (or biclique), a special bipartite graph where every vertex on one side of the bipartition is connected to every vertex on the other side The simplex , which is identical to a complete graph of n + 1 {\displaystyle n+1} vertices, where n {\displaystyle n} is the dimension of the simplex.