Search results
Results from the WOW.Com Content Network
In arithmetic geometry, the Tate–Shafarevich group Ш(A/K) of an abelian variety A (or more generally a group scheme) defined over a number field K consists of the elements of the Weil–Châtelet group (/) = (,), where = (/) is the absolute Galois group of K, that become trivial in all of the completions of K (i.e., the real and complex completions as well as the p-adic fields obtained from ...
The Weil pairing is an important concept in elliptic curve cryptography; e.g., it may be used to attack certain elliptic curves (see MOV attack). It and other pairings have been used to develop identity-based encryption schemes.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory.Geometric, algebraic, and arithmetic objects are assigned objects called K-groups.
Among other statements, Poitou–Tate duality establishes a perfect pairing between certain Shafarevich groups.Given a global field , a set S of primes, and the maximal extension which is unramified outside S, the Shafarevich groups capture, broadly speaking, those elements in the cohomology of (/) which vanish in the Galois cohomology of the local fields pertaining to the primes in S.
The statement that this is the only quadratic pairing function is known as the Fueter–Pólya theorem. [9] Whether this is the only polynomial pairing function is still an open question. When we apply the pairing function to k 1 and k 2 we often denote the resulting number as k 1, k 2 . [citation needed]
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme.In algebraic topology, it is a cohomology theory known as topological K-theory.
[9] The hospitals/residents problem with couples allows the set of residents to include couples who must be assigned together, either to the same hospital or to a specific pair of hospitals chosen by the couple (e.g., a married couple want to ensure that they will stay together and not be stuck in programs that are far away from each other).