enow.com Web Search

  1. Ad

    related to: elementary matrix calculator with steps

Search results

  1. Results from the WOW.Com Content Network
  2. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GL n (F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Now through application of elementary row operations, find the reduced echelon form of this n × 2n matrix. The matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this case the right block of the final matrix is A −1. If the algorithm is unable to reduce the left block to I, then A is not invertible.

  4. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.

  5. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  7. Eight-point algorithm - Wikipedia

    en.wikipedia.org/wiki/Eight-point_algorithm

    The basic eight-point algorithm is here described for the case of estimating the essential matrix .It consists of three steps. First, it formulates a homogeneous linear equation, where the solution is directly related to , and then solves the equation, taking into account that it may not have an exact solution.

  8. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The above example of matrices demonstrates that matrix product of top row and leftmost columns of involved matrices plays special role for to succeed. Let us mark consecutive versions of matrices with (), (), … and then let us write matrix product () = () in such way that these rows and columns are separated from the rest.

  9. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix, [2] to perform QR decompositions and in the first step of the QR algorithm.

  1. Ad

    related to: elementary matrix calculator with steps