enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]

  3. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  4. Liouville's formula - Wikipedia

    en.wikipedia.org/wiki/Liouville's_formula

    In mathematics, Liouville's formula, also known as the Abel–Jacobi–Liouville identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system.

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    If is a singular matrix of rank , then it admits an LU factorization if the first leading principal minors are nonzero, although the converse is not true. [9] If a square, invertible matrix has an LDU (factorization with all diagonal entries of L and U equal to 1), then the factorization is unique. [8]

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish ...

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b', where b' is the projection of b onto the column space of A. The best ...

  8. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  9. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    The matrix equation ˙ = + with n×1 parameter constant vector b is stable if and only if all eigenvalues of the constant matrix A have a negative real part.. The steady state x* to which it converges if stable is found by setting