enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    This algorithm transmits O(n 2 /p 2/3) words per processor, which is asymptotically optimal. [28] However, this requires replicating each input matrix element p 1/3 times, and so requires a factor of p 1/3 more memory than is needed to store the inputs. This algorithm can be combined with Strassen to further reduce runtime.

  4. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...

  5. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Using a naive lower bound and schoolbook matrix multiplication for the upper bound, one can straightforwardly conclude that 2 ≤ ω ≤ 3. Whether ω = 2 is a major open question in theoretical computer science , and there is a line of research developing matrix multiplication algorithms to get improved bounds on ω .

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = ⁡ = ⁡ for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...

  8. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB; the summation involves a single term S = Ø, and the formula states 1 = 1, with both sides given by the determinant of the 0×0 matrix. For m = 1, the summation ranges over the collection ([]) of the n different singletons taken from [n], and both ...

  9. Square root of a 2 by 2 matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix

    A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.