Search results
Results from the WOW.Com Content Network
This is an accepted version of this page This is the latest accepted revision, reviewed on 2 December 2024. This article is about the technological process. For the board game, see Terraforming Mars (board game). Hypothetical modification of Mars into a habitable planet Artist's conception of the process of terraforming Mars The terraforming of Mars or the terraformation of Mars is a ...
The Earth's atmosphere limits the belts' particles to regions above 200–1,000 km, [11] (124–620 miles) while the belts do not extend past 8 Earth radii R E. [11] The belts are confined to a volume which extends about 65 ° [ 11 ] on either side of the celestial equator .
The magnetosphere is roughly shaped like a hemisphere on the side facing the Sun, then is drawn out in a long wake on the opposite side. The boundary of this region is called the magnetopause, and some of the particles are able to penetrate the magnetosphere through this region by partial reconnection of the magnetic field lines. [31]
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
Researchers have developed global models using MHD to simulate phenomena within Earth's magnetosphere, such as the location of Earth's magnetopause [24] (the boundary between the Earth's magnetic field and the solar wind), the formation of the ring current, auroral electrojets, [25] and geomagnetically induced currents. [26]
A telluric current (from Latin tellūs 'earth'), or Earth current, [1] is an electric current that flows underground or through the sea, resulting from natural and human-induced causes. These currents have extremely low frequency and traverse large areas near or at Earth 's surface.
The ring current system consists of a band, at a distance of 3 to 8 R E, [1] which lies in the equatorial plane and circulates clockwise around the Earth (when viewed from the north). The particles of this region produce a magnetic field in opposition to the Earth's magnetic field and so an Earthly observer would observe a decrease in the ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...