Search results
Results from the WOW.Com Content Network
A SWB generator is the basis for the RANLUX generator, [19] widely used e.g. for particle physics simulations. Maximally periodic reciprocals: 1992 R. A. J. Matthews [20] A method with roots in number theory, although never used in practical applications. KISS: 1993 G. Marsaglia [21] Prototypical example of a combination generator. Multiply ...
Fortuna is a cryptographically secure pseudorandom number generator (CS-PRNG) devised by Bruce Schneier and Niels Ferguson and published in 2003. It is named after Fortuna, the Roman goddess of chance. FreeBSD uses Fortuna for /dev/random and /dev/urandom is symbolically linked to it since FreeBSD 11. [1]
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
Thus, declaring const string testUserName = "John" is better than several occurrences of the 'magic value' "John" in a test suite. For example, if it is required to randomly shuffle the values in an array representing a standard pack of playing cards, this pseudocode does the job using the Fisher–Yates shuffle algorithm:
Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.
The method represents one of the oldest and best-known pseudorandom number generator algorithms. The theory behind them is relatively easy to understand, and they are easily implemented and fast, especially on computer hardware which can provide modular arithmetic by storage-bit truncation. The generator is defined by the recurrence relation:
For example, a digital door lock with a 4-digit code (each digit having 10 possibilities, from 0 to 9) would have B (10, 4) solutions, with length 10 000. Therefore, only at most 10 000 + 3 = 10 003 (as the solutions are cyclic) presses are needed to open the lock, whereas trying all codes separately would require 4 × 10 000 = 40 000 presses.