Search results
Results from the WOW.Com Content Network
Matching (graph theory) MaxDDBS; Maximal independent set; Maximum agreement subtree problem; Maximum common edge subgraph; Maximum common induced subgraph; Maximum cut; Maximum flow problem; Maximum weight matching; Metric k-center; Minimum k-cut; Mixed Chinese postman problem; Multi-trials technique
Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
[2] A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory. Extremal graph theory is closely related to fields such as Ramsey theory, spectral graph theory, computational complexity theory, and additive combinatorics, and ...
In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .
The problem of constructing a solution for the graph realization problem with the additional constraint that each such solution comes with the same probability was shown to have a polynomial-time approximation scheme for the degree sequences of regular graphs by Cooper, Martin, and Greenhill. [5] The general problem is still unsolved.
Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]