Search results
Results from the WOW.Com Content Network
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields.
The development of non-relativistic quantum mechanics in the early twentieth century preserved the Newtonian concept of time in the Schrödinger equation. The ability of non-relativistic quantum mechanics and special relativity to successfully describe observations motivated efforts to extend quantum concepts to the relativistic domain.
The Einstein–Infeld–Hoffmann equations of motion, jointly derived by Albert Einstein, Leopold Infeld and Banesh Hoffmann, are the differential equations describing the approximate dynamics of a system of point-like masses due to their mutual gravitational interactions, including general relativistic effects.
In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, =, or specifically, of which the velocity is comparable to the speed of light. [1]
In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that ...