Search results
Results from the WOW.Com Content Network
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e. surjective). Not translatable (without circumlocutions) to some languages other than English.
A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a projection-valued measure; these are used in functional analysis for the spectral theorem. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity if the subset is infinite.
In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (= {,,,}), one could say that "3 is an element of A", expressed notationally as .
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
More precisely, each natural number n is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set S has n elements" means that there exists a one to one correspondence between the two sets n and S. The sets used to define natural numbers satisfy Peano axioms.