Search results
Results from the WOW.Com Content Network
The mesosphere (/ ˈ m ɛ s ə s f ɪər, ˈ m ɛ z-, ˈ m iː s ə-,-z ə-/; [1] from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases.
The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C (-148 °F or 173 K). [1]
The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. [3] For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.
The water cycle controls every aspect of Earth’s climate system, which means that as the climate changes, so too does nearly every step of water’s movement on the planet.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km (2 to 5 °F/1000 ft ), as obtained from the International Civil ...
As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. [1] Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per kilometre (0.47 °C/km; 1.4 °F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 °C/km; 0.70 °F/mi) at 2,600 kilometres (1,600 mi). [3]
In the mesosphere (heights of about 50–100 km (30–60 mi; 200,000–300,000 ft)) atmospheric tides can reach amplitudes of more than 50 m/s and are often the most significant part of the motion of the atmosphere.