enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  4. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).

  5. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    For example, one can multiply a sine that is less than 0.5 by some power of two or ten to bring it into the range [0.5,1]. After finding that logarithm in the radical table, one adds the logarithm of the power of two or ten that was used (he gives a short table), to get the required logarithm. [1]: p. 36

  6. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.

  7. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  8. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    The precise size that can be guaranteed is not known, but the best bounds known on its size involve binary logarithms. In particular, all graphs have a clique or independent set of size at least ⁠ 1 / 2log 2 n (1 − o(1)) and almost all graphs do not have a clique or independent set of size larger than 2 log 2 n (1 + o(1)). [32]

  9. Inverse Symbolic Calculator - Wikipedia

    en.wikipedia.org/wiki/Inverse_Symbolic_Calculator

    A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.