Search results
Results from the WOW.Com Content Network
English: A diagram showing the relationship between the motion of conducting fluid (organized into rolls by the Coriolis force) and the magnetic field that the motion generates. Original work by the United States Geological Survey
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
Convection is also seen in the rising plume of hot air from fire, plate tectonics, oceanic currents (thermohaline circulation) and sea-wind formation (where upward convection is also modified by Coriolis forces). In engineering applications, convection is commonly visualized in the formation of microstructures during the cooling of molten ...
The polar cell is a simple system with strong convection drivers. Though cool and dry relative to equatorial air, the air masses at the 60th parallel are still sufficiently warm and moist to undergo convection and drive a thermal loop. At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward.
Convection is caused by yeast releasing CO2. In fluid dynamics, a convection cell is the phenomenon that occurs when density differences exist within a body of liquid or gas. These density differences result in rising and/or falling convection currents, which are the key characteristics of a convection cell. When a volume of fluid is heated, it ...
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.
Forced convection: when a fluid is forced to flow over the surface by an internal source such as fans, by stirring, and pumps, creating an artificially induced convection current. [ 3 ] In many real-life applications (e.g. heat losses at solar central receivers or cooling of photovoltaic panels), natural and forced convection occur at the same ...
The electric convection field drives strong electric currents within the polar dynamo regions (e.g. DP1 and DP2) which can be simulated by the model. Manifestations of upper atmospheric electric currents are the corresponding magnetic variations on the ground. Unfortunately, this connection is unique only for horizontally flowing current systems.