Search results
Results from the WOW.Com Content Network
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.).
A unit fraction is a common fraction with a numerator of 1 (e.g., 1 / 7 ). Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 .
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
Note: this continued fraction's rate of convergence μ tends to 3 − √ 8 ≈ 0.1715729, hence 1 / μ tends to 3 + √ 8 ≈ 5.828427, whose common logarithm is 0.7655... ≈ 13 / 17 > 3 / 4 . The same 1 / μ = 3 + √ 8 (the silver ratio squared) also is observed in the unfolded general continued fractions of ...
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets = Which method is faster "by hand" depends on the ...
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.