Search results
Results from the WOW.Com Content Network
[8] [9] Every interval of one magnitude equates to a variation in brightness of 5 √ 100 or roughly 2.512 times. Consequently, a magnitude 1 star is about 2.5 times brighter than a magnitude 2 star, about 2.5 2 times brighter than a magnitude 3 star, about 2.5 3 times brighter than a magnitude 4 star, and so on.
minimum brightness [42] −1.47: star system Sirius: seen from Earth Brightest star except for the Sun at visible wavelengths [45] −0.83: star Eta Carinae: seen from Earth apparent brightness as a supernova impostor in April 1843 −0.72: star Canopus: seen from Earth 2nd brightest star in night sky [46] −0.55: planet Saturn: seen from Earth
The Bortle dark-sky scale (usually referred to as simply the Bortle scale) is a nine-level numeric scale that measures the night sky's brightness of a particular location. It quantifies the astronomical observability of celestial objects and the interference caused by light pollution .
Sky Quality Meter model SQM-L. A sky quality meter (SQM) is an instrument used to measure the luminance of the night sky, more specifically the Night Sky Brightness (NSB) at the zenith, with a bandwidth ranging from 390 nm to 600 nm. [1]
The Sun is the brightest star as viewed from Earth, at −26.78 mag.The second brightest is Sirius at −1.46 mag. For comparison, the brightest non-stellar objects in the Solar System have maximum brightnesses of:
(The S 10 unit is defined as the surface brightness of a star whose V-magnitude is 10 and whose light is smeared over one square degree, or 27.78 mag arcsec −2.) The total sky brightness in zenith is therefore ~220 S 10 or 21.9 mag/arcsec² in the V-band. Note that the contributions from Airglow and Zodiacal light vary with the time of year ...
Factor ()Multiple Value Item 0 0 lux 0 lux Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1]: 140 microlux: Venus at brightest [1]: 200 microlux
By measuring these properties from a star's spectrum, the position of a main sequence star on the H–R diagram can be determined, and thereby the star's absolute magnitude estimated. A comparison of this value with the apparent magnitude allows the approximate distance to be determined, after correcting for interstellar extinction of the ...