Search results
Results from the WOW.Com Content Network
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [ 1 ] [ 2 ] [ 3 ] On an expression or formula calculator , one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
This slide rule is positioned to yield several values: From C scale to D scale (multiply by 2), from D scale to C scale (divide by 2), A and B scales (multiply and divide by 4), A and D scales (squares and square roots). In addition to the logarithmic scales, some slide rules have other mathematical functions encoded on other auxiliary scales.
The products of small numbers may be calculated by using the squares of integers; for example, to calculate 13 × 17, one can remark 15 is the mean of the two factors, and think of it as (15 − 2) × (15 + 2), i.e. 15 2 − 2 2.
The original TI-Nspire was developed out of the TI PLT SHH1 prototype calculator, the TI-92 series of calculators released in 1995, and the TI-89 series of calculators released in 1998. [ 2 ] [ 3 ] In 2011, Texas Instruments released the CX line of their TI-Nspire calculators which effectively replaced the previous generation.
The TI-59 is an early programmable calculator, that was manufactured by Texas Instruments from 1977. It is the successor to the TI SR-52, quadrupling the number of "program steps" of storage, and adding "ROM Program Modules" (an insertable ROM chip, capable of holding 5000 program steps).
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
With the chisanbop method it is possible to represent all numbers from 0 to 99 with the hands, rather than the usual 0 to 10, and to perform the addition, subtraction, multiplication and division of numbers. [4] The system has been described as being easier to use than a physical abacus for students with visual impairments. [5]
Napier's bones is a manually operated calculating device created by John Napier of Merchiston, Scotland for the calculation of products and quotients of numbers. The method was based on lattice multiplication, and also called rabdology, a word invented by Napier.