Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
The sulfur–iodine cycle (S–I cycle) is a series of thermochemical processes used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
Since liquid water flows, ocean waters cycle and flow in currents around the world. Since water easily changes phase, it can be carried into the atmosphere as water vapour or frozen as an iceberg. It can then precipitate or melt to become liquid water again. All marine life is immersed in water, the matrix and womb of life itself. [7]
Soda lime canister used in anaesthetic machines to act as a carbon dioxide scrubber. Soda lime, a mixture of sodium hydroxide (NaOH) and calcium oxide (CaO), is used in granular form within recirculating breathing environments like general anesthesia and its breathing circuit, submarines, rebreathers, and hyperbaric chambers and underwater habitats.
Limestone is the raw material for production of lime, primarily known for treating soils, purifying water and smelting copper. Lime is an important ingredient used in chemical industries. [ 110 ] Limestone and (to a lesser extent) marble are reactive to acid solutions, making acid rain a significant problem to the preservation of artifacts made ...
A small piece of rapidly melting solid argon shows two concurrent phase changes. The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour). Other phase changes include: Transition to a mesophase between solid and liquid, such as one of the "liquid crystal" phases.
As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to allow separation of the constituents, such as oxygen, nitrogen, and the noble gases." [4] Another is the conversion of solid coal into a liquid form usable as a substitute for liquid fuels. [5]
The water cycle (known scientifically as the hydrologic cycle) is the continuous exchange of water within the hydrosphere, between the atmosphere, soil water, surface water, groundwater, and plants. Water moves perpetually through each of these regions in the water cycle consisting of the following transfer processes: