Search results
Results from the WOW.Com Content Network
To convert integer decimals to octal, divide the original number by the largest possible power of 8 and divide the remainders by successively smaller powers of 8 until the power is 1. The octal representation is formed by the quotients, written in the order generated by the algorithm. For example, to convert 125 10 to octal: 125 = 8 2 × 1 + 61
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:
Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is ...
Octets can be represented using number systems of varying bases such as the hexadecimal, decimal, or octal number systems. The binary value of all eight bits set (or activated) is 11111111 2, equal to the hexadecimal value FF 16, the decimal value 255 10, and the octal value 377 8. One octet can be used to represent decimal values ranging from ...
When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding, implementations of arbitrary-precision arithmetic, and other applications. For a list of bases and their applications, see list of numeral systems.
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
Such conversion is available for both advanced calculators and programming languages. For example, the hexadecimal representation of the 24 bits above is 4D616E. The octal representation is 23260556. Those 8 octal digits can be split into pairs (23 26 05 56), and each pair is converted to decimal to yield 19 22 05 46.
In a fixed-width binary code, each letter, digit, or other character is represented by a bit string of the same length; that bit string, interpreted as a binary number, is usually displayed in code tables in octal, decimal or hexadecimal notation. There are many character sets and many character encodings for them.