Search results
Results from the WOW.Com Content Network
The formula above is a geometric series—each successive term is one fourth of the previous term. In modern mathematics, that formula is a special case of the sum formula for a geometric series. Archimedes evaluates the sum using an entirely geometric method, [8] illustrated in the adjacent picture. This picture shows a unit square which has ...
For example, when transforming the 7-square to the 8-square, we add 15 elements; these adjunctions are the 8s in the above figure. This gnomonic technique also provides a proof that the sum of the first n odd numbers is n 2 ; the figure illustrates 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2 .
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
The last step of the proof fails if the projective space has dimension less than 3, as in this case it is not possible to find a point not in the plane. Monge's theorem also asserts that three points lie on a line, and has a proof using the same idea of considering it in three rather than two dimensions and writing the line as an intersection ...
Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...
This was, in considerable part, influenced by the example Hilbert set in the Grundlagen. A 2003 effort (Meikle and Fleuriot) to formalize the Grundlagen with a computer, though, found that some of Hilbert's proofs appear to rely on diagrams and geometric intuition, and as such revealed some potential ambiguities and omissions in his definitions ...
It repeatedly replaces two numbers by their arithmetic and geometric mean, in order to approximate their arithmetic-geometric mean. The version presented below is also known as the Gauss–Euler, Brent–Salamin (or Salamin–Brent) algorithm; [1] it was independently discovered in 1975 by Richard Brent and Eugene Salamin.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.