enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.

  3. Moseley's law - Wikipedia

    en.wikipedia.org/wiki/Moseley's_law

    [1] [2] Until Moseley's work, "atomic number" was merely an element's place in the periodic table and was not known to be associated with any measurable physical quantity. [3] In brief, the law states that the square root of the frequency of the emitted X-ray is approximately proportional to the atomic number : ν ∝ Z . {\displaystyle {\sqrt ...

  4. Greninger chart - Wikipedia

    en.wikipedia.org/wiki/Greninger_chart

    In crystallography, a Greninger chart [1] / ˈ ɡ r ɛ n ɪ ŋ ər / is a chart that allows angular relations between zones and planes in a crystal to be directly read from an x-ray diffraction photograph. The Greninger chart is a simple trigonometric tool to determine g and d for a fixed sample-to-film distance. (If one uses a 2-d detector the ...

  5. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.

  6. Siegbahn notation - Wikipedia

    en.wikipedia.org/wiki/Siegbahn_notation

    The use of the letters K and L to denote X-rays originates in a 1911 paper by Charles Glover Barkla, titled The Spectra of the Fluorescent Röntgen Radiations [1] ("Röntgen radiation" is an archaic name for "X-rays"). By 1913, Henry Moseley had clearly differentiated two types of X-ray lines for each element, naming them α and β. [2]

  7. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    Usually X-ray diffraction in spectrometers is achieved on crystals, but in Grating spectrometers, the X-rays emerging from a sample must pass a source-defining slit, then optical elements (mirrors and/or gratings) disperse them by diffraction according to their wavelength and, finally, a detector is placed at their focal points.

  8. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  9. Anomalous X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Anomalous_X-ray_scattering

    Anomalous X-ray scattering (AXRS or XRAS) is a non-destructive determination technique within X-ray diffraction that makes use of the anomalous dispersion that occurs when a wavelength is selected that is in the vicinity of an absorption edge of one of the constituent elements of the sample. It is used in materials research to study nanometer ...