enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    A continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids. Classical Momentum is a vector quantity : it has both magnitude and direction.

  3. Probability current - Wikipedia

    en.wikipedia.org/wiki/Probability_current

    In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability.Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid.

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  5. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Examples of continuity equations often written in this form include electric charge conservation = where J is the electric 4-current; and energy–momentum conservation = where T is the stress–energy tensor.

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The equation above is a vector equation in a three-dimensional flow, but it can be expressed as three scalar equations in three coordinate directions. The conservation of momentum equations for the compressible, viscous flow case is called the Navier–Stokes equations. [2] Conservation of energy

  7. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    As written in the Cauchy momentum equation, the stress terms p and τ are yet unknown, so this equation alone cannot be used to solve problems. Besides the equations of motion—Newton's second law—a force model is needed relating the stresses to the flow motion. [12]

  8. Gordon decomposition - Wikipedia

    en.wikipedia.org/wiki/Gordon_Decomposition

    This is what is expected, so the division by 2 in the spin contribution to the momentum density is necessary. The absence of a division by 2 in the formula for the current reflects the = gyromagnetic ratio of the electron. In other words, a spin-density gradient is twice as effective at making an electric current as it is at contributing to the ...

  9. Conserved current - Wikipedia

    en.wikipedia.org/wiki/Conserved_current

    In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.