Search results
Results from the WOW.Com Content Network
The Euclidean rhythm in music was discovered by Godfried Toussaint in 2004 and is described in a 2005 paper "The Euclidean Algorithm Generates Traditional Musical Rhythms". [1] The greatest common divisor of two numbers is used rhythmically giving the number of beats and silences, generating almost all of the most important world music rhythms ...
Given the Cayley-Menger relations as explained above, the following section will bring forth two algorithms to decide whether a given matrix is a distance matrix corresponding to a Euclidean point set. The first algorithm will do so when given a matrix AND the dimension, , via a geometric constraint solving algorithm.
On the right Nicomachus's example with numbers 49 and 21 resulting in their GCD of 7 (derived from Heath 1908:300). In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder.
Godfried Toussaint (1944–2019) was a Belgian–Canadian computer scientist who worked as a professor of computer science for McGill University and New York University.His main professional expertise was in computational geometry, [2] but he was also a jazz drummer, [3] held a long-term interest in the mathematics of music and musical rhythm, and since 2005 held an affiliation as a researcher ...
Editing of mathematical expressions in two-dimensional form; plotting graphs and parametric plots of functions in two and three dimensions, and animating them; drawing charts and diagrams; APIs for linking it on an external program such as a database, or using in a programming language to use the computer algebra system
An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
A Euclidean domain is an integral domain which can be endowed with at least one Euclidean function. A particular Euclidean function f is not part of the definition of a Euclidean domain, as, in general, a Euclidean domain may admit many different Euclidean functions. In this context, q and r are called respectively a quotient and a remainder of ...