enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.

  3. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology , but nowadays is learned as an independent discipline.

  4. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems.

  5. Pattern search (optimization) - Wikipedia

    en.wikipedia.org/wiki/Pattern_search_(optimization)

    Pattern search (also known as direct search, derivative-free search, or black-box search) is a family of numerical optimization methods that does not require a gradient. As a result, it can be used on functions that are not continuous or differentiable. One such pattern search method is "convergence" (see below), which is based on the theory of ...

  6. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    The homotopy groups are fundamental to homotopy theory, which in turn stimulated the development of model categories. It is possible to define abstract homotopy groups for simplicial sets. Homology groups are similar to homotopy groups in that they can represent "holes" in a topological space. However, homotopy groups are often very complex and ...

  7. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.

  8. Homotopical connectivity - Wikipedia

    en.wikipedia.org/wiki/Homotopical_connectivity

    An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial. Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy".

  9. Regular homotopy - Wikipedia

    en.wikipedia.org/wiki/Regular_homotopy

    Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy. This curve has total curvature 6π, and turning number 3.. The Whitney–Graustein theorem classifies the regular homotopy classes of a circle into the plane; two immersions are regularly homotopic if and only if they have the same turning number – equivalently, total curvature; equivalently, if and only if ...

  1. Related searches what is a homotopy in math meaning dictionary chart pattern search algorithm

    homotopy in mathhomotopy wikipedia
    what is a homotopyhomotopy examples
    homotopy theoryhomotopy equation
    homotopy map exampleshomotopy x y