enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .

  3. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...

  4. Sentence (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Sentence_(mathematical_logic)

    Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems.

  5. Predicate (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Predicate_(mathematical_logic)

    A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.

  6. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...

  7. Logical constant - Wikipedia

    en.wikipedia.org/wiki/Logical_constant

    Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic . One of the fundamental questions in the philosophy of logic is "What is a logical constant?"; [ 1 ] that is, what special feature of certain constants ...

  8. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    First-order logic can quantify over individuals, but not over properties. That is, we can take an atomic sentence like Cube(b) and obtain a quantified sentence by replacing the name with a variable and attaching a quantifier: [1] ∃x Cube(x) However, we cannot do the same with the predicate. That is, the following expression: ∃P P(b)

  9. Propositional function - Wikipedia

    en.wikipedia.org/wiki/Propositional_function

    In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.